Comprehensive Mathematics Formula Guide
Class 6th to class 12th and college level.
Calculus:
Number Formation
Number Formation | ||
---|---|---|
Number | Mathematical Representation | Example |
One Digit Number | `a=a` | `a=5` `5=5` |
Two Digit Number | `ab = 10a + b` | `ab=15` `a=1` `b=5` `15=10xx1 + 5` |
Three Digit Number | `abc=100a+10b+c` | `abc=251` `a=2` `b=5` `c=1` `251=100xx2 + 10xx5+1` |
Four Digit Number | `abcd=1000a+100b+10c+d` | `abcd=3121` `a=3` `b=1` `c=2` `d=1` `3121=1000xx3 + 100xx1+10xx2+1` |
`...oo` | `...oo` | So on... |
Laws of Exponents Property
Laws of Exponents Property | ||
---|---|---|
Number | Mathematical Representation | |
`x^0` | `x^0=1` | |
`(1)^n` | `(1)^n=1` | |
`x^-n` | `x^-n= 1/x^n` | |
`(x^n)^m` | `(x^n)^m= x^(nm)` | |
`x^n / x^m` | `x^n / x^m= x^(n-m)` | |
`x^n / y^n` | `x^n / y^n= (x/y)^n` | |
`x^n xx y^n` | `x^n xx y^n= (xy)^n` | |
`(x / y)^(-n)` | `(x/ y)^(-n)= (y/x)^n` |
Algebraic Identity
Algebraic Identity Property | ||
---|---|---|
Expression | Identity | |
`(a + b)^2` | `(a + b)^2 = a^2 + b^2 + 2ab` | |
`(a – b)^2` | `(a – b)^2 = a^2 + b^2 – 2ab` | |
`(a + b) (a – b)` | `(a + b) (a – b) = a^2 – b^2` | |
`(x + a) (x + b)` | `(x + a) (x + b) = x^2 + (a + b)x + ab` | |
`(x + a) (x – b)` | `(x + a) (x – b) = x^2 + (a – b)x – ab` | |
`(x – a) (x + b)` | `(x – a) (x + b) = x^2 + (b – a)x – ab` | |
`(x – a) (x – b)` | `(x – a) (x – b) = x^2 – (a + b)x + ab` | |
`(a + b)^3` | `(a + b)^3 = a^3 + b^3 + 3ab(a + b)` | |
`(a – b)^3` | `(a – b)^3 = a^3 – b^3 – 3ab(a – b)` |
Square Roots Property:
A square number always ends with 0, 1, 4, 5, 6, and 9 at its units place. And it is the inverse operation of the square number.Geometry Formula
Geometry Formula | |||||
---|---|---|---|---|---|
Cuboid | H=Height, L=Length, B=Breadth, S=Side | ||||
Total Surface area of Cuboid | `A=2((LxxB) + (BxxH) + (LxxH))` | ||||
Lateral Surface area of Cuboid | `A=2xx H(L+B)` | ||||
Volume of Cuboid | `V=L xx B xx H` | ||||
Perimeter of Cuboid | `P=4 xx (L+B+H)` | ||||
Space Diagonals of Cuboid | `D=sqrt (L^2+B^2+H^2)` | ||||
Face Diagonals of Cuboid | `D=sqrt (L^2+B^2)` | ||||
Cube | S= Side | ||||
Surface area of Cube | `A=6(S)^2` | ||||
Lateral Surface area of Cube | `A=4(S)^2` | ||||
Volume of Cube | `V=(S)^3` | ||||
Perimeter of Cube | `P=12 xx (S)` | ||||
Space Diagonals of Cube | `D=sqrt 3 (S)` | ||||
Sphere | r= Radius | ||||
Surface area of Sphere | `S=4pir^2` | ||||
Diameter of a Sphere | `D=2r` | ||||
Volume of Sphere | `V=(4/3)pir^3` | ||||
Circumference of Sphere | `2pir` | ||||
Hemisphere | r= Radius | ||||
Total Surface area of Hemisphere | `C=3pir^2` | ||||
Curved Surface area of Hemisphere | `C=2pir^2` | ||||
Area of Hollow Hemisphere | `A=2pi(r_2^2 + r_1^2)+pi(r_2^2 - r_1^2)` | ||||
Volume of Hemisphere | `V=(2/3)pir^3` | ||||
Hexagon | a= Length of One Side | ||||
Area of Hexagon | `A=(3sqrt3)/2xx a^2` | ||||
Permiter of a Hexagon | `P=6xxa` | ||||
Short Diagonal of Hexagon | `D=sqrt3xxa` | ||||
Long Diagonal of Hexagon | `D=2xxa` | ||||
Prism | L= Base Length, W= Base Width, H= Height, A= Apothem Length | ||||
The surface area of a prism = (2×BaseArea) +Lateral Surface Area. The volume of a prism = Base Area× Height |
|||||
Rectangular Prism (A Rectangular Prism has 2 parallel rectangular bases and 4 rectangular faces.) |
Surface area of Prism | `A=2xx(LWxxWHxxHL)` | |||
Volume of Prism | `V=WxxLxxH` | ||||
Base Area of Prism | `A=LxxW` | ||||
Triangular Prism A triangular prism has 3 rectangular faces and 2 parallel triangular bases. |
Surface area of Prism | `A=AL+3LH` | |||
Volume of Prism | `V=(1/2)ALH` | ||||
Base Area of Prism | `A=(1/2)AL` | ||||
Pentagonal Prism A pentagonal prism has 5 rectangular faces and 2 parallel pentagonal bases. |
Surface area of Prism | `A=5AL+5LH` | |||
Volume of Prism | `V=(5/2)ALH` | ||||
Base Area of Prism | `A=(5/2)AL` | ||||
Hexagonal Prism A hexagonal prism has six rectangular faces and two parallel hexagonal bases. |
Surface area of Prism | `A=6AL+6LH` | |||
Volume of Prism | `V=3ALH` | ||||
Base Area of Prism | `A=3AL` |
Algebra:
Euler's Formula:
`cos(theta) + isin(theta) = e^(itheta)`
Polar Form to Quadratic Form:
`"Convert " 5e^(ipi/3) " to the imaginary from " fr"a+bi."`
`"Sol: "`
`e^(itheta) = cos(theta) + isin(theta)`
`theta = pi/3`
`rArr5(cos(pi/3) + isin(pi/3))`
`rArr5(1/2 + isqrt3/2)`
`rArr5/2 + 5sqrt3/2i`
Quadratic Form to Polar Form:
`"Convert " sqrt2 + sqrt2i " to the Ploar from " re^(itheta).`
`Solution:`
`a=sqrt2, b=sqrt2`
`r = sqrt(a^2 + b^2)`
`" "rArrsqrt((sqrt(2))^2+(sqrt(2))^2) = 2`
`tantheta = sintheta/costheta `
`tantheta = sqrt2/sqrt2 rArr 1 rArr theta = pi/4`
`rArr2e^ipi/4`
Trigonometry Formula
All Trigonometry Formulas | ||
---|---|---|
Number | Mathematical Representation | |
`cos^2theta = 1- sin^2 theta` | `tantheta = sintheta / costheta` | |
`sec theta = 1/cos theta` | `tan^2theta = sec^2theta – 1` | |
`"Ploar Form" = re^(itheta)` ` r= sqrt(a^2 + b^2)` |
`` |
Trigonometric table(sin-cos-tan table) for 0 to 360.
Trigonometric table 0 to 360 Degree with (sin-cos-tan table) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
`Degrees` | `0^@` | `30^@` | `45^@` | `60^@` | `90^@` | `120^@` | `135^@` | `150^@` | `180^@` | `210^@` | `225^@` | `240^@` | `270^@` | `300^@` | `315^@` | `330^@` | `360^@` |
`Radians` | `0` | `frac{pi}{6}` | `frac{pi}{4}` | `frac{pi}{3}` | `frac{pi}{2}` | `frac{2pi}{3}` | `frac{3pi}{4}` | `frac{5pi}{6}` | `pi` | `frac{7pi}{6}` | `frac{5pi}{4}` | `frac{4pi}{3}` | `frac{3pi}{2}` | `frac{5pi}{3}` | `frac{7pi}{4}` | `frac{11pi}{6}` | `2pi` |
`sin` | `0` | `1/2` | `1/sqrt2` | `sqrt3/2` | `1` | `sqrt3/2` | `1/sqrt2` | `1/2` | `0` | `-1/2` | `-1/sqrt2` | `-sqrt3/2` | `-1` | `-sqrt3/2` | `-1/sqrt2` | `1/2` | `0` |
`cos` | `1` | `sqrt3/2` | `1/sqrt2` | `1/2` | `0` | `-1/2` | `-1/sqrt2` | `-sqrt3/2` | `-1` | `-sqrt3/2` | `-1/sqrt2` | `-1/2` | `0` | `1/2` | `1/sqrt2` | `sqrt3/2` | `1` |
`tan` | `0` | `1/sqrt3` | `1` | `sqrt3` | `UD` | `-sqrt3` | `-1` | `-1/sqrt3` | `0` | `1/sqrt3` | `1` | `sqrt3` | `UD` | `-sqrt3` | `-1` | `-1/sqrt3` | `0` |
`cosec` | `UD` | `2` | `sqrt2` | `2/sqrt3` | `1` | `2/sqrt3` | `sqrt2` | `2` | `UD` | `-2` | `-sqrt2` | `2/sqrt3` | `-1` | `-2/sqrt3` | `-sqrt2` | `-2` | `UD` |
`sec` | `1` | `2/sqrt3` | `sqrt2` | `2` | `UD` | `-2` | `-sqrt2` | `2/sqrt3` | `-1` | `-2/sqrt3` | `-sqrt2` | `2` | `UD` | `2` | `sqrt2` | `2/sqrt3` | `1` |
`cot` | `UD` | `sqrt3` | `1` | `frac{1}{sqrt3}` | `0` | `-frac{1}{sqrt3}` | `-1` | `-sqrt3` | `UD` | `sqrt3` | `1` | `frac{1}{sqrt3}` | `0` | `-frac{1}{sqrt3}` | `-1` | `-sqrt3` | `UD` |
Rotations in 2D
Matrix for rotation of a point about the origin by an angle 'Theta'.
`[[x_2], [y_2]] = [[cos(theta), -sin(theta)], [+sin(theta), cos(theta)]] [[x_1], [y_1]]`