List of all Mathematics formulas intermediate to advanced level.

All Basic Maths Formulas for CBSE Class 6 to 12, And the List of Advance Mathematics Formula Handbook. Learn the maths formulas for primary, secondary
List of all Mathematics formulas intermediate to advanced level. - www.pdfcup.com

Comprehensive Mathematics Formula Guide
Class 6th to class 12th and college level.

You must visit these two links for more advance formulas:

Calculus:

Rational Numbers Property
Commutative
Property
Addition `a + b = b + a` For any rational numbers a and b.
Subtraction `a – b != b – a` For any rational numbers a and b.
Multiplication `(a xx b) = (b xx a)` For any rational numbers a and b.
Division `(a-:b) != (b-:a)` For any rational numbers a and b.
Associative
Property
Addition `(a + b) + c = a + (b + c)` For any rational numbers a, b, and c.
Subtraction `(a – b) – c != a – (b – c)` For any rational numbers a, b, and c.
Multiplication `(a xx b) xx c = a xx (b xx c)` For any rational numbers a, b, and c.
Division `(a -: b) -: c != a -: (b -: c)` For any rational numbers a, b, and c.
Distributive
Property
`a xx ( b + c ) = (a xx b) +( a xx c)` For any three rational numbers a, b and c.

Number Formation

Number Formation
Number Mathematical Representation Example
One Digit Number `a=a` `a=5`
`5=5`
Two Digit Number `ab = 10a + b` `ab=15`
`a=1`
`b=5`
`15=10xx1 + 5`
Three Digit Number `abc=100a+10b+c` `abc=251`
`a=2`
`b=5`
`c=1`
`251=100xx2 + 10xx5+1`
Four Digit Number `abcd=1000a+100b+10c+d` `abcd=3121`
`a=3`
`b=1`
`c=2`
`d=1`
`3121=1000xx3 + 100xx1+10xx2+1`
`...oo` `...oo` So on...

Laws of Exponents Property

Laws of Exponents Property
Number Mathematical Representation
`x^0` `x^0=1`
`(1)^n` `(1)^n=1`
`x^-n` `x^-n= 1/x^n`
`(x^n)^m` `(x^n)^m= x^(nm)`
`x^n / x^m` `x^n / x^m= x^(n-m)`
`x^n / y^n` `x^n / y^n= (x/y)^n`
`x^n xx y^n` `x^n xx y^n= (xy)^n`
`(x / y)^(-n)` `(x/ y)^(-n)= (y/x)^n`

Algebraic Identity

Algebraic Identity Property
Expression Identity
`(a + b)^2` `(a + b)^2 = a^2 + b^2 + 2ab`
`(a – b)^2` `(a – b)^2 = a^2 + b^2 – 2ab`
`(a + b) (a – b)` `(a + b) (a – b) = a^2 – b^2`
`(x + a) (x + b)` `(x + a) (x + b) = x^2 + (a + b)x + ab`
`(x + a) (x – b)` `(x + a) (x – b) = x^2 + (a – b)x – ab`
`(x – a) (x + b)` `(x – a) (x + b) = x^2 + (b – a)x – ab`
`(x – a) (x – b)` `(x – a) (x – b) = x^2 – (a + b)x + ab`
`(a + b)^3` `(a + b)^3 = a^3 + b^3 + 3ab(a + b)`
`(a – b)^3` `(a – b)^3 = a^3 – b^3 – 3ab(a – b)`

Square Roots Property:

A square number always ends with 0, 1, 4, 5, 6, and 9 at its units place. And it is the inverse operation of the square number.

Geometry Formula

Geometry Formula
Cuboid H=Height, L=Length, B=Breadth, S=Side
Total Surface area of Cuboid `A=2((LxxB) + (BxxH) + (LxxH))`
Lateral Surface area of Cuboid `A=2xx H(L+B)`
Volume of Cuboid `V=L xx B xx H`
Perimeter of Cuboid `P=4 xx (L+B+H)`
Space Diagonals of Cuboid `D=sqrt (L^2+B^2+H^2)`
Face Diagonals of Cuboid `D=sqrt (L^2+B^2)`
Cube S= Side
Surface area of Cube `A=6(S)^2`
Lateral Surface area of Cube `A=4(S)^2`
Volume of Cube `V=(S)^3`
Perimeter of Cube `P=12 xx (S)`
Space Diagonals of Cube `D=sqrt 3 (S)`
Sphere r= Radius
Surface area of Sphere `S=4pir^2`
Diameter of a Sphere `D=2r`
Volume of Sphere `V=(4/3)pir^3`
Circumference of Sphere `2pir`
Hemisphere r= Radius
Total Surface area of Hemisphere `C=3pir^2`
Curved Surface area of Hemisphere `C=2pir^2`
Area of Hollow Hemisphere `A=2pi(r_2^2 + r_1^2)+pi(r_2^2 - r_1^2)`
Volume of Hemisphere `V=(2/3)pir^3`
Hexagon a= Length of One Side
Area of Hexagon `A=(3sqrt3)/2xx a^2`
Permiter of a Hexagon `P=6xxa`
Short Diagonal of Hexagon `D=sqrt3xxa`
Long Diagonal of Hexagon `D=2xxa`
Prism L= Base Length, W= Base Width, H= Height, A= Apothem Length
The surface area of a prism = (2×BaseArea) +Lateral Surface Area.
The volume of a prism = Base Area× Height
Rectangular Prism
(A Rectangular Prism has 2 parallel rectangular bases and 4 rectangular faces.)
Surface area of Prism `A=2xx(LWxxWHxxHL)`
Volume of Prism `V=WxxLxxH`
Base Area of Prism `A=LxxW`
Triangular Prism
A triangular prism has 3 rectangular faces and 2 parallel triangular bases.
Surface area of Prism `A=AL+3LH`
Volume of Prism `V=(1/2)ALH`
Base Area of Prism `A=(1/2)AL`
Pentagonal Prism
A pentagonal prism has 5 rectangular faces and 2 parallel pentagonal bases.
Surface area of Prism `A=5AL+5LH`
Volume of Prism `V=(5/2)ALH`
Base Area of Prism `A=(5/2)AL`
Hexagonal Prism
A hexagonal prism has six rectangular faces and two parallel hexagonal bases.
Surface area of Prism `A=6AL+6LH`
Volume of Prism `V=3ALH`
Base Area of Prism `A=3AL`

Algebra:

Euler's Formula:

`cos(theta) + isin(theta) = e^(itheta)`

Polar Form to Quadratic Form:

`"Convert " 5e^(ipi/3) " to the imaginary from " fr"a+bi."`
`"Sol: "`
`e^(itheta) = cos(theta) + isin(theta)`
`theta = pi/3`

`rArr5(cos(pi/3) + isin(pi/3))`
`rArr5(1/2 + isqrt3/2)`
`rArr5/2 + 5sqrt3/2i`

Quadratic Form to Polar Form:

`"Convert " sqrt2 + sqrt2i " to the Ploar from " re^(itheta).`
`Solution:`
`a=sqrt2, b=sqrt2`
`r = sqrt(a^2 + b^2)` `" "rArrsqrt((sqrt(2))^2+(sqrt(2))^2) = 2`
`tantheta = sintheta/costheta `
`tantheta = sqrt2/sqrt2 rArr 1 rArr theta = pi/4`

`rArr2e^ipi/4`

Trigonometry Formula

All Trigonometry Formulas
Number Mathematical Representation
`cos^2theta = 1- sin^2 theta` `tantheta = sintheta / costheta`
`sec theta = 1/cos theta` `tan^2theta = sec^2theta – 1`
`"Ploar Form" = re^(itheta)`
` r= sqrt(a^2 + b^2)`
``

Trigonometric table(sin-cos-tan table) for 0 to 360.

Trigonometric table 0 to 360 Degree with (sin-cos-tan table)
`Degrees` `0^@` `30^@` `45^@` `60^@` `90^@` `120^@` `135^@` `150^@` `180^@` `210^@` `225^@` `240^@` `270^@` `300^@` `315^@` `330^@` `360^@`
`Radians` `0` `frac{pi}{6}` `frac{pi}{4}` `frac{pi}{3}` `frac{pi}{2}` `frac{2pi}{3}` `frac{3pi}{4}` `frac{5pi}{6}` `pi` `frac{7pi}{6}` `frac{5pi}{4}` `frac{4pi}{3}` `frac{3pi}{2}` `frac{5pi}{3}` `frac{7pi}{4}` `frac{11pi}{6}` `2pi`
`sin` `0` `1/2` `1/sqrt2` `sqrt3/2` `1` `sqrt3/2` `1/sqrt2` `1/2` `0` `-1/2` `-1/sqrt2` `-sqrt3/2` `-1` `-sqrt3/2` `-1/sqrt2` `1/2` `0`
`cos` `1` `sqrt3/2` `1/sqrt2` `1/2` `0` `-1/2` `-1/sqrt2` `-sqrt3/2` `-1` `-sqrt3/2` `-1/sqrt2` `-1/2` `0` `1/2` `1/sqrt2` `sqrt3/2` `1`
`tan` `0` `1/sqrt3` `1` `sqrt3` `UD` `-sqrt3` `-1` `-1/sqrt3` `0` `1/sqrt3` `1` `sqrt3` `UD` `-sqrt3` `-1` `-1/sqrt3` `0`
`cosec` `UD` `2` `sqrt2` `2/sqrt3` `1` `2/sqrt3` `sqrt2` `2` `UD` `-2` `-sqrt2` `2/sqrt3` `-1` `-2/sqrt3` `-sqrt2` `-2` `UD`
`sec` `1` `2/sqrt3` `sqrt2` `2` `UD` `-2` `-sqrt2` `2/sqrt3` `-1` `-2/sqrt3` `-sqrt2` `2` `UD` `2` `sqrt2` `2/sqrt3` `1`
`cot` `UD` `sqrt3` `1` `frac{1}{sqrt3}` `0` `-frac{1}{sqrt3}` `-1` `-sqrt3` `UD` `sqrt3` `1` `frac{1}{sqrt3}` `0` `-frac{1}{sqrt3}` `-1` `-sqrt3` `UD`

Rotations in 2D

Matrix for rotation of a point about the origin by an angle 'Theta'.
`[[x_2], [y_2]] = [[cos(theta), -sin(theta)], [+sin(theta), cos(theta)]] [[x_1], [y_1]]`

About the author

D Shwari
I'm a professor at National University's Department of Computer Science. My main streams are data science and data analysis. Project management for many computer science-related sectors. Next working project on Al with deep Learning.....

Post a Comment