List of all Mathematics formulas intermediate to advanced level.

All Basic Maths Formulas for CBSE Class 6 to 12, And the List of Advance Mathematics Formula Handbook. Learn the maths formulas for primary, secondary
List of all Mathematics formulas intermediate to advanced level. - www.pdfcup.com

Comprehensive Mathematics Formula Guide
Class 6th to class 12th and college level.

You must visit these two links for more advance formulas:

Calculus:

Rational Numbers Property
Commutative
Property
Addition a+b=b+a For any rational numbers a and b.
Subtraction abba For any rational numbers a and b.
Multiplication (a×b)=(b×a) For any rational numbers a and b.
Division (a÷b)(b÷a) For any rational numbers a and b.
Associative
Property
Addition (a+b)+c=a+(b+c) For any rational numbers a, b, and c.
Subtraction (ab)ca(bc) For any rational numbers a, b, and c.
Multiplication (a×b)×c=a×(b×c) For any rational numbers a, b, and c.
Division (a÷b)÷ca÷(b÷c) For any rational numbers a, b, and c.
Distributive
Property
a×(b+c)=(a×b)+(a×c) For any three rational numbers a, b and c.

Number Formation

Number Formation
Number Mathematical Representation Example
One Digit Number a=a a=5
5=5
Two Digit Number ab=10a+b ab=15
a=1
b=5
15=10×1+5
Three Digit Number abc=100a+10b+c abc=251
a=2
b=5
c=1
251=100×2+10×5+1
Four Digit Number abcd=1000a+100b+10c+d abcd=3121
a=3
b=1
c=2
d=1
3121=1000×3+100×1+10×2+1
... ... So on...

Laws of Exponents Property

Laws of Exponents Property
Number Mathematical Representation
x0 x0=1
(1)n (1)n=1
x-n x-n=1xn
(xn)m (xn)m=xnm
xnxm xnxm=xn-m
xnyn xnyn=(xy)n
xn×yn xn×yn=(xy)n
(xy)-n (xy)-n=(yx)n

Algebraic Identity

Algebraic Identity Property
Expression Identity
(a+b)2 (a+b)2=a2+b2+2ab
(ab)2 (ab)2=a2+b22ab
(a+b)(ab) (a+b)(ab)=a2b2
(x+a)(x+b) (x+a)(x+b)=x2+(a+b)x+ab
(x+a)(xb) (x+a)(xb)=x2+(ab)xab
(xa)(x+b) (xa)(x+b)=x2+(ba)xab
(xa)(xb) (xa)(xb)=x2(a+b)x+ab
(a+b)3 (a+b)3=a3+b3+3ab(a+b)
(ab)3 (ab)3=a3b33ab(ab)

Square Roots Property:

A square number always ends with 0, 1, 4, 5, 6, and 9 at its units place. And it is the inverse operation of the square number.

Geometry Formula

Geometry Formula
Cuboid H=Height, L=Length, B=Breadth, S=Side
Total Surface area of Cuboid A=2((L×B)+(B×H)+(L×H))
Lateral Surface area of Cuboid A=2×H(L+B)
Volume of Cuboid V=L×B×H
Perimeter of Cuboid P=4×(L+B+H)
Space Diagonals of Cuboid D=L2+B2+H2
Face Diagonals of Cuboid D=L2+B2
Cube S= Side
Surface area of Cube A=6(S)2
Lateral Surface area of Cube A=4(S)2
Volume of Cube V=(S)3
Perimeter of Cube P=12×(S)
Space Diagonals of Cube D=3(S)
Sphere r= Radius
Surface area of Sphere S=4πr2
Diameter of a Sphere D=2r
Volume of Sphere V=(43)πr3
Circumference of Sphere 2πr
Hemisphere r= Radius
Total Surface area of Hemisphere C=3πr2
Curved Surface area of Hemisphere C=2πr2
Area of Hollow Hemisphere A=2π(r22+r12)+π(r22-r12)
Volume of Hemisphere V=(23)πr3
Hexagon a= Length of One Side
Area of Hexagon A=332×a2
Permiter of a Hexagon P=6×a
Short Diagonal of Hexagon D=3×a
Long Diagonal of Hexagon D=2×a
Prism L= Base Length, W= Base Width, H= Height, A= Apothem Length
The surface area of a prism = (2×BaseArea) +Lateral Surface Area.
The volume of a prism = Base Area× Height
Rectangular Prism
(A Rectangular Prism has 2 parallel rectangular bases and 4 rectangular faces.)
Surface area of Prism A=2×(LW×WH×HL)
Volume of Prism V=W×L×H
Base Area of Prism A=L×W
Triangular Prism
A triangular prism has 3 rectangular faces and 2 parallel triangular bases.
Surface area of Prism A=AL+3LH
Volume of Prism V=(12)ALH
Base Area of Prism A=(12)AL
Pentagonal Prism
A pentagonal prism has 5 rectangular faces and 2 parallel pentagonal bases.
Surface area of Prism A=5AL+5LH
Volume of Prism V=(52)ALH
Base Area of Prism A=(52)AL
Hexagonal Prism
A hexagonal prism has six rectangular faces and two parallel hexagonal bases.
Surface area of Prism A=6AL+6LH
Volume of Prism V=3ALH
Base Area of Prism A=3AL

Algebra:

Euler's Formula:

cos(θ)+isin(θ)=eiθ

Polar Form to Quadratic Form:

Convert 5eiπ3 to the imaginary from a+bi.
Sol:
eiθ=cos(θ)+isin(θ)
θ=π3

5(cos(π3)+isin(π3))
5(12+i32)
52+532i

Quadratic Form to Polar Form:

Convert 2+2i to the Ploar from reiθ.
Solution:
a=2,b=2
r=a2+b2 (2)2+(2)2=2
tanθ=sinθcosθ
tanθ=221θ=π4

2eiπ4

Trigonometry Formula

All Trigonometry Formulas
Number Mathematical Representation
cos2θ=1-sin2θ tanθ=sinθcosθ
secθ=1cosθ tan2θ=sec2θ1
Ploar Form=reiθ
r=a2+b2

Trigonometric table(sin-cos-tan table) for 0 to 360.

Trigonometric table 0 to 360 Degree with (sin-cos-tan table)
Degrees 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
Radians 0 π6 π4 π3 π2 2π3 3π4 5π6 π 7π6 5π4 4π3 3π2 5π3 7π4 11π6 2π
sin 0 12 12 32 1 32 12 12 0 -12 -12 -32 -1 -32 -12 12 0
cos 1 32 12 12 0 -12 -12 -32 -1 -32 -12 -12 0 12 12 32 1
tan 0 13 1 3 UD -3 -1 -13 0 13 1 3 UD -3 -1 -13 0
cosec UD 2 2 23 1 23 2 2 UD -2 -2 23 -1 -23 -2 -2 UD
sec 1 23 2 2 UD -2 -2 23 -1 -23 -2 2 UD 2 2 23 1
cot UD 3 1 13 0 -13 -1 -3 UD 3 1 13 0 -13 -1 -3 UD

Rotations in 2D

Matrix for rotation of a point about the origin by an angle 'Theta'.
[x2y2]=[cos(θ)-sin(θ)+sin(θ)cos(θ)][x1y1]

About the author

D Shwari
I'm a professor at National University's Department of Computer Science. My main streams are data science and data analysis. Project management for many computer science-related sectors. Next working project on Al with deep Learning.....

Post a Comment